
Mapping Streaming Applications to OpenCL
Abhishek Ray*1

 *Student Author 1Nanyang Technological University

ABSTRACT
Graphic processing units (GPUs) have been gaining
popularity in general purpose and high performance
computing. A GPU is made up of a number of
streaming multiprocessors (SM), each of which
consists of many processing cores. A large number of
general-purpose applications have been mapped onto
GPUs efficiently. Stream processing applications,
however, exhibit properties such as unfavorable data
movement patterns and low computation-to-
communication ratio that might lead to a poor
performance on a GPU. We describe the automated
mapping framework developed earlier that maps most
stream processing applications onto NVIDIA GPUs
efficiently by taking into account its architectural
characteristics. We then discuss the implementation
details of porting the mapping framework to OpenCL
running on AMD GPUs and evaluate the performance
of the mapping framework by running several
benchmarks. Performance between the generated
CUDA and OpenCL code is compared based on
different heuristics.

1. INTRODUCTION
A GPU consists of a number of multi-threaded
processors called streaming multiprocessors (SM).
Each SM consists of execution cores, which execute
in SIMD mode. On each SM, threads are grouped into
scheduling units called wavefronts and warps,
respectively, in AMD and NVIDIA terminology.
Several warps/wavefronts can be supported on each
SM at the same time.

Streaming applications are an important domain of
applications. Streaming applications can be
represented as graphs, which are composed of nodes
that communicate independently over data channels
[1][6].

An automated mapping framework [2] was developed
that maps stream processing applications onto GPUs
efficiently by taking into account architectural
characteristics of NVIDIA GPUs. The mapping flow
captures the parallelism from the streaming language,
models the parallel architecture of the GPU and uses a
novel execution model of heterogeneous threads,
which is basically a mix of compute and memory
access threads.

1.1 Motivation

CUDA and OpenCL are two different programming
frameworks for programming GPUs. CUDA is
NVIDIA’s proprietary technology and is specific to
NVIDIA GPUs whereas OpenCL is an open and free
standard managed by the Khronos Group [4] that can
be used to program different devices such as CPUs,
GPUs and DSPs. Its portability is one of the prime
motivations for porting framework to OpenCL.

2. DESIGN
The mapping framework is divided into two parts:
StreamIT language – In StreamIt, the basic
programmable unit is called a Filter. It has a single
input and a single output and its body is essentially
Java-like code. StreamIt programs have a hierarchical
graph structure where a filter is represented by a leaf
node. The flow of StreamIt programs can be further
distributed by placing filters into any of the composite
blocks such as pipelines, splitters and joiners.

Figure 1: Different Hierarchical Streams provided by

StreamIT
Automated Mapping onto GPUs –
A filter executes in a sequence of steps. Firstly, it
reads the data from the memory. Secondly, it
performs the computation on the data and lastly, it
writes it back to the memory to pass it to the next
processing filter. Usually the ratio between
computation and memory access is small. Therefore,
if global memory is used to store the filter’s input and
output data, most of the time will be spent on memory
accesses. Thus, it is beneficial to bring this data onto
the shared memory as the threads can access this
region of memory faster.
In the framework two different types of threads are
used: memory access (M) threads and compute (C)

threads. M threads prefetch the data for the next
stream execution while the C threads perform
computation on the data fetched by M threads onto
the shared memory in the previous execution.
As C threads are always ready for execution, they can
access the SM.
The automated mapping framework transforms the
code in following ways:

• Memory transfer operations with large latency are
clustered into dedicated threads.
• The data flow is transformed based on the
parallelism exhibited by StreamIt.

Figure 2: Automated Mapping Flow of the Framework

The mapping framework is implemented as an
extension to the back-end of the StreamIt compiler. C
code is generated by the application that can be
compiled by the GPU compiler. The StreamIT
compiler flattens the hierarchical stream graph and
generates a schedule, which consists of the order and
the number of executions of each of these operators.
After StreamIT generates the schedule, the mapping
framework takes over as the generated schedule is
sequential and is meant for single-threaded execution.

The requirements of each operator in the schedule are
analyzed and a buffer layout is produced. After this
various mapping parameters such as the number of
stream schedules to execute in parallel, the number of

C threads required for the execution of each stream
schedule, and the number of M threads accessing
global memory are determined according to the
stream schedule structure and specification of the
target GPU.

Two components are built after this – A Kernel
loader, which runs on the CPU and performs all the
initializations and the GPU kernel code that executes
on the device and performs the mapping and
computation.

3. MAPPING To OpenCL
Porting an application from CUDA to OpenCL is
straightforward as both programming frameworks
have similar syntax [3]. However, there are a few
major differences.

In CUDA, both the host code and the device code is
compiled at the run time where as in OpenCL host
code is compiled statically and the device code is
compiled at run time. As a result, an additional header
file is automatically generated in OpenCL, which
stores all the macros, which are required, by both the
host code and the device code. These macros were
defined in the device code in CUDA.

Another key difference is in the device initialization.
Since OpenCL targets a lot of different platforms, it
has a complicated initialization process as compared
to CUDA.

Table 1: Syntax Difference – Device Initialization
CUDA OpenCL

Schedule<<<grid,
threads,
sharedSize>>>(in_stre
am, out_stream,
thread_step, iterations)

status = clGetContextInfo(context,
CL_CONTEXT_DEVICES, ..);
commandQueue=

clCreateCommandQueue(context,
devices[0], ..);

in_stream = clCreateBuffer(context,
CL_MEM_READ_WRITE |
CL_MEM_USE_HOST_PTR, ..);

out_stream = clCreateBuffer(context,
CL_MEM_READ_WRITE |
CL_MEM_USE_HOST_PTR,..);

clBuildProgram(program, 1, devices,
NULL, NULL, NULL);

kernel = clCreateKernel(program,

“Schedule", &status);

clSetKernelArg(kernel,0,
sizeof(cl_mem), (void *)&in_stream);
clEnqueueNDRangeKernel(commandQ
ueue, kernel, ..);

Table 2: Syntax Difference- Kernel Code
CUDA OpenCL

Global void Schedule
(unsigned int *in_stream,
unsigned int
*out_stream) {

extern shared
 unsigned int
volatile shared_mem[];

int iterations_start =
iterations_total *
blockIdx.x / gridDim.x;
int iterations_stop =
iterations_total *
(blockIdx.x + 1) /
gridDim.x; if
((threadIdx.x <
WORKERS) &&
(threadIdx.x % 32 ==
0))
sync_work[threadIdx.x /
32] = 0;

 syncthreads();

}

kernel void Schedule(global
unsigned int * in_stream, global
unsigned int * out_stream, const int
thread_step,const int iterations_total,
__local volatile unsigned int
shared_mem)

{

int iterations_start = iterations_total
*get_group_id(0) /
get_num_groups(0); int
iterations_stop = iterations_total *
(get_group_id(0) + 1) /
get_num_groups(0); if
((get_local_id(0) < WORKERS) &&
(get_local_id(0) % 32 == 0))
sync_work[get_local_id(0) / 32] = 0;

barrier(CLK_LOCAL_MEM_FE
NCE);

}

4. EXPERIMENTS
After mapping the streaming application to OpenCL,
different benchmarks were tested to check for
correctness of the generated code and to compare the
results of the OpenCL code with the CUDA code. The
devices compared were AMD Radeon HD 6970
running OpenCL and NVIDIA Tesla C2050 running
CUDA.

Table 3: Architectural Differences between devices being
compared

 AMD Radeon
HD 6970

NVIDIA
Tesla C2050

#Compute
Unit

24 14

#Cores - 448

#Processing
Elements

1536 -

#Core
Clock
(MHz)

800 1500

#Max BW
(GB/s)

176 144

#Max
GFLOPs

2703 1288

Parameters used for the Graphs:

• S, the number of C threads per execution.
• F, the number of M threads that transfer data

between global and SM memory.
• X – axis – number of parallel stream executions in

each SM.
• Performance is measured in FLOPS [5]. It is

calculated as the number of floating point
operations / second.

• Performance is compared between OpenCL and
CUDA by taking into account their respective
FLOPS using the same parameters. It is calculated
by FLOPSOPENCL / FLOPSCUDA * 100

4.1 PERFORMANCE COMPARISON
BETWEEN GPU & CPU
Performance between the GPU (Radeon HD 6970)
and the CPU (Intel Xeon CPU E5540 @ 2.53 GHz)
was compared. As expected, the GPU easily
outperformed the CPU.

Figure 3: Performance Comparison – GPU vs CPU

4.2 PERFORMANCE COMPARISON
BETWEEN OPENCL & CUDA

Performance between OpenCL and CUDA was
compared by taking into account the FLOPS (Floating

0
5

10
15
20
25
30
35
40

Sp
ee

du
p GPU vs CPU

Point Operations/Second).

Figure 4: Performance Comparison – Bitonic Recursive –
Radeon HD 6970 & Tesla C2050

Figure 5: Performance Comparison – DCT – Radeon HD

6970 & Tesla C2050

OpenCL initially performs better than CUDA till it
experiences a drop in performance. This drop in
performance is because at this point CUDA
experiences a full warp (32 threads) and hence an
increase in performance. At this point, the
performance of OpenCL in comparison to CUDA
drops. After this point, the performance of OpenCL
increases linearly in comparison to CUDA as OpenCL
attains a full wavefront (64 threads). However,
performance of CUDA on Tesla C2050 increases at a
faster rate in comparison to Radeon HD 6970 as it has
a higher core clock.

4.3 FAIR PERFORMANCE COMPARISON
BETWEEN OPENCL & CUDA

As we are comparing performance across two
different GPU architectures, it isn’t fair to just
compare the FLOPS, which takes into consideration
the execution time of the application that depends on
how powerful the processor it. If the comparison had
been made on the same device, then comparing the
performance based on FLOPS would have been fair.

Performance between OpenCL on Radeon HD 6970
and CUDA on Tesla C2050 is compared fairly by
taking into account factors, which are most important

for our application. These factors are listed Memory
Bandwidth, Floating Point Performance and
Architecture Related Differences.

Table 4: Comparison between the two devices based on
different heurestics for FFT benchmark

 AMD Radeon
HD 6970

NVIDIA
Tesla C2050

#BW
attained
(GB/s)

0.0105 0.0288

#Flops
attained

(GFLOPs)

0.1124 0.3079

As we can see from Tables 3 and 4, even though
Radeon HD 6970 has a higher number of cores, a
higher theoretical floating-point performance and a
higher theoretical memory bandwidth in comparison
to Tesla C2050, it achieves a lower performance. We
see that both devices attain very low GFLOPs. The
main reason for this is that both devices attain a very
low memory bandwidth and hence this limits the
performance, as floating-point performance is directly
proportional to the memory bandwidth. An
application cannot experience an increase in floating
point performance if it is blocked waiting for data due
to insufficient memory bandwidth.

Performance of the mapping framework on CUDA
was evaluated after removing the data from the
constant memory and putting it into global memory.
As expected, there was a decrease in performance as
compared to the benchmarks, which used constant
memory.

Figure 6: Effect Of Constant Memory on Performance – DCT

Performance of the application drops after the
removal of Constant Memory in CUDA as expected
but the performance drop is just about 10-12%, which
isn’t a very significant drop, and its performance is
still better than OpenCL.

0

20

40

60

80

100

120

8 24 40 56 72 88 104 120 136 152 168 184

Pe
rf

or
m

an
ce

C

om
pa

ris
on

 (%
)

Number of Executions

OpenCL vs CUDA / S=1 / F=64

0
20
40
60
80

100
120

8 24 40 56 72 88 104 120 136 152 168 184

Pe
rf

or
m

an
ce

C

om
pa

ris
on

 (
%

)

Number of Executions

OpenCL vs CUDA /
S=1 / F=64

50
60
70
80
90

100

2 6 10 14 18 22 26 30 34 38 42 46

Pe
rf

or
m

an
ce

C

om
pa

ris
on

 (
N

ew
 /

O
ld

)

Number of Executions

S=1/F=64

Performance of the mapping framework was then
evaluated by estimating the effect of S on the different
devices. Performance of OpenCL doesn’t increase at
the same rate as CUDA as S is increased.

Figure 7: Effect of S on the Performance – MatrixMult

The performance of OpenCL on Radeon HD 6970
increases slower than CUDA on Tesla C2050 when S
is increased. This shows that as the degree of
parallelism is increased, CUDA responds much better
than OpenCL. CUDA exposes the parallelism better
than OpenCL.

One of the main reasons why the performance of
OpenCL decreases slower than CUDA when S is
increased is because Radeon HD 6970 has a slower
core clock as compared to Tesla C1060 and Tesla
C2050 as seen in Table 5. Core clock gives an
indication of how fast the processor operates on each
GPU and hence when we increase S, the device has to
process more data and Tesla C2050 processes this
data faster than Radeon HD 6970.

OpenCL on AMD is a portable language for GPU
programming as it can target different devices.
However, there might be a performance penalty
because of its portability. CUDA seems to be a better
choice for applications where achieving as high a
performance as possible is important.

5. CONCLUSION
Different benchmarks were tested and their
performance on OpenCL analyzed after the

framework was successfully ported.

Performance between OpenCL and CUDA GPUs was
initially evaluated and analyzed by comparing the
FLOPS attained. However, as FLOPS is a measure of
execution time, it doesn’t ensure fairness. A new fair
method of comparison was developed which takes
into consideration the architecture of the different
devices being compared. The comparison was made
using a few different heuristics most important for the
mapping framework.

6. ACKNOWLEDGMENTS
I would like to thank Dr. Huynh Phung Huynh and the
staff at the Institute Of Higher Performance
Computing and Prof. Stephen Turner and the staff at
PDCC Lab in NTU for their continued support
throughout the year.

7. REFERENCES
[1] M. Gordon, “Compiler Techniques for Scalable

Performance of Stream Programs on Multicore
Architectures.”

[2] Hagiescu, A.; Huynh Phung Huynh; Weng-Fai
Wong; Goh, R.S.M.; , "Automated Architecture-
Aware Mapping of Streaming Applications Onto
GPUs," Parallel & Distributed Processing
Symposium (IPDPS), 2011 IEEE International ,
vol., no., pp.467-478, 16-20 May 2011

[3] http://developer.amd.com/zones/OpenCLZone/pr
ogramming/pages/portingcudatoopencl.aspx

[4] The OpenCL Specification. -
http://www.khronos.org/registry/cl/specs/opencl-
1.1.pdf

[5] http://en.wikipedia.org/wiki/FLOPS
[6] W. Thies, “Language and Compiler Support for

Stream Programs.”
[7] Huynh Phung Huynh, Andrei Hagiescu, Weng Fai

Wong, Rick Siow Mong Goh. Scalable
Framework for Mapping Streaming Applications
onto Multi-GPU Systems. 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP). Feb 2012

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Pe
rf

or
m

an
ce

 C
om

pa
ris

on
(%

)

Number of Executions

OpenCL vs CUDA /
S=1 / F=64

OpenCL vs CUDA /
S=2/F=64

OpenCL vs CUDA /
S=4/F=64

