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ABSTRACT 
Graphic processing units (GPUs) have been gaining 
popularity in general purpose and high performance 
computing. A GPU is made up of a number of 
streaming multiprocessors (SM), each of which 
consists of many processing cores.  A large number of 
general-purpose applications have been mapped onto 
GPUs efficiently. Stream processing applications, 
however, exhibit properties such as unfavorable data 
movement patterns and low computation-to-
communication ratio that might lead to a poor 
performance on a GPU. We describe the automated 
mapping framework developed earlier that maps most 
stream processing applications onto NVIDIA GPUs 
efficiently by taking into account its architectural 
characteristics. We then discuss the implementation 
details of porting the mapping framework to OpenCL 
running on AMD GPUs and evaluate the performance 
of the mapping framework by running several 
benchmarks. Performance between the generated 
CUDA and OpenCL code is compared based on 
different heuristics. 

1. INTRODUCTION 
A GPU consists of a number of multi-threaded 
processors called streaming multiprocessors (SM). 
Each SM consists of execution cores, which execute 
in SIMD mode. On each SM, threads are grouped into 
scheduling units called wavefronts and warps, 
respectively, in AMD and NVIDIA terminology. 
Several warps/wavefronts can be supported on each 
SM at the same time. 

Streaming applications are an important domain of 
applications. Streaming applications can be 
represented as graphs, which are composed of nodes 
that communicate independently over data channels 
[1][6]. 

An automated mapping framework [2] was developed 
that maps stream processing applications onto GPUs 
efficiently by taking into account architectural 
characteristics of NVIDIA GPUs. The mapping flow 
captures the parallelism from the streaming language, 
models the parallel architecture of the GPU and uses a 
novel execution model of heterogeneous threads, 
which is basically a mix of compute and memory 
access threads. 

1.1 Motivation 

CUDA and OpenCL are two different programming 
frameworks for programming GPUs. CUDA is 
NVIDIA’s proprietary technology and is specific to 
NVIDIA GPUs whereas OpenCL is an open and free 
standard managed by the Khronos Group [4] that can 
be used to program different devices such as CPUs, 
GPUs and DSPs. Its portability is one of the prime 
motivations for porting framework to OpenCL. 

2. DESIGN 
The mapping framework is divided into two parts: 
StreamIT language – In StreamIt, the basic 
programmable unit is called a Filter. It has a single 
input and a single output and its body is essentially 
Java-like code.  StreamIt programs have a hierarchical 
graph structure where a filter is represented by a leaf 
node. The flow of StreamIt programs can be further 
distributed by placing filters into any of the composite 
blocks such as pipelines, splitters and joiners. 

 
Figure 1: Different Hierarchical Streams provided by 

StreamIT 
Automated Mapping onto GPUs – 
A filter executes in a sequence of steps. Firstly, it 
reads the data from the memory. Secondly, it 
performs the computation on the data and lastly, it 
writes it back to the memory to pass it to the next 
processing filter. Usually the ratio between 
computation and memory access is small. Therefore, 
if global memory is used to store the filter’s input and 
output data, most of the time will be spent on memory 
accesses.  Thus, it is beneficial to bring this data onto 
the shared memory as the threads can access this 
region of memory faster. 
In the framework two different types of threads are 
used: memory access (M) threads and compute (C) 



threads. M threads prefetch the data for the next 
stream execution while the C threads perform 
computation on the data fetched by M threads onto 
the shared memory in the previous execution. 
As C threads are always ready for execution, they can 
access the SM. 
The automated mapping framework transforms the 
code in following ways: 

• Memory transfer operations with large latency are 
clustered into  dedicated threads.  
• The data flow is transformed based on the 
parallelism exhibited by  StreamIt.  

 

Figure 2: Automated Mapping Flow of the Framework 
 

The mapping framework is implemented as an 
extension to the back-end of the StreamIt compiler. C 
code is generated by the application that can be 
compiled by the GPU compiler.  The StreamIT 
compiler flattens the hierarchical stream graph and 
generates a schedule, which consists of the order and 
the number of executions of each of these operators. 
After StreamIT generates the schedule, the mapping 
framework takes over as the generated schedule is 
sequential and is meant for single-threaded execution. 

The requirements of each operator in the schedule are 
analyzed and a buffer layout is produced. After this 
various mapping parameters such as the number of 
stream schedules to execute in parallel, the number of 

C threads required for the execution of each stream 
schedule, and the number of M threads accessing 
global memory are determined according to the 
stream schedule structure and specification of the 
target GPU. 

Two components are built after this – A Kernel 
loader, which runs on the CPU and performs all the 
initializations and the GPU kernel code that executes 
on the device and performs the mapping and 
computation. 

3. MAPPING To OpenCL 
Porting an application from CUDA to OpenCL is 
straightforward as both programming frameworks 
have similar syntax [3]. However, there are a few 
major differences.  

In CUDA, both the host code and the device code is 
compiled at the run time where as in OpenCL host 
code is compiled statically and the device code is 
compiled at run time. As a result, an additional header 
file is automatically generated in OpenCL, which 
stores all the macros, which are required, by both the 
host code and the device code. These macros were 
defined in the device code in CUDA. 

Another key difference is in the device initialization. 
Since OpenCL targets a lot of different platforms, it 
has a complicated initialization process as compared 
to CUDA. 

Table 1: Syntax Difference – Device Initialization 
CUDA OpenCL 

Schedule<<<grid, 
threads, 
sharedSize>>>(in_stre
am, out_stream, 
thread_step, iterations) 

 

status = clGetContextInfo(context, 
CL_CONTEXT_DEVICES, ..); 
commandQueue=  
 
clCreateCommandQueue(context, 
devices[0], ..);  
 
in_stream = clCreateBuffer(context, 
CL_MEM_READ_WRITE | 
CL_MEM_USE_HOST_PTR, .. ); 
 
out_stream = clCreateBuffer(context, 
CL_MEM_READ_WRITE | 
CL_MEM_USE_HOST_PTR,..); 
 
clBuildProgram(program, 1, devices, 
NULL, NULL, NULL);  
 

kernel = clCreateKernel(program, 



“Schedule", &status);  

clSetKernelArg(kernel,0, 
sizeof(cl_mem), (void *)&in_stream); 
clEnqueueNDRangeKernel(commandQ
ueue, kernel, .. ); 

 

Table 2: Syntax Difference- Kernel Code 
CUDA OpenCL 

Global void Schedule 
(unsigned int *in_stream, 
unsigned int 
*out_stream) { 

extern   shared 
 unsigned int 
volatile shared_mem[]; 

int iterations_start = 
iterations_total * 
blockIdx.x / gridDim.x; 
int iterations_stop = 
iterations_total * 
(blockIdx.x + 1) / 
gridDim.x; if 
((threadIdx.x < 
WORKERS) && 
(threadIdx.x % 32 == 
0)) 
sync_work[threadIdx.x / 
32] = 0; 

  syncthreads(); 

} 

kernel void Schedule(  global  
unsigned int * in_stream,   global  
unsigned int * out_stream, const int 
thread_step,const int iterations_total, 
__local volatile unsigned int 
shared_mem) 

{ 

int iterations_start = iterations_total 
*get_group_id(0) / 
get_num_groups(0); int 
iterations_stop = iterations_total * 
(get_group_id(0) + 1) / 
get_num_groups(0); if 
((get_local_id(0) < WORKERS) && 
(get_local_id(0) % 32 == 0)) 
sync_work[get_local_id(0) / 32] = 0; 

barrier(CLK_LOCAL_MEM_FE
NCE); 

} 

 

4. EXPERIMENTS 
After mapping the streaming application to OpenCL, 
different benchmarks were tested to check for 
correctness of the generated code and to compare the 
results of the OpenCL code with the CUDA code. The 
devices compared were AMD Radeon HD 6970 
running OpenCL and NVIDIA Tesla C2050 running 
CUDA. 

Table 3: Architectural Differences between devices being 
compared 

 AMD Radeon 
HD 6970 

NVIDIA 
Tesla C2050 

#Compute 
Unit 

24 14 

#Cores - 448 

#Processing 
Elements 

1536 - 

#Core 
Clock 
(MHz) 

800 1500 
 

#Max BW 
(GB/s) 

176 144 

#Max 
GFLOPs 

2703 1288 

 

Parameters used for the Graphs: 

• S, the number of C threads per execution.  
• F, the number of M threads that transfer data 

between global and SM memory. 
• X – axis – number of parallel stream executions in 

each SM. 
• Performance is measured in FLOPS [5]. It is 

calculated as the number of floating point 
operations / second. 

• Performance is compared between OpenCL and 
CUDA by taking into account their respective 
FLOPS using the same parameters. It is calculated 
by FLOPSOPENCL / FLOPSCUDA  * 100 

4.1 PERFORMANCE COMPARISON 
BETWEEN GPU & CPU 
Performance between the GPU (Radeon HD 6970) 
and the CPU (Intel Xeon CPU E5540 @ 2.53 GHz) 
was compared. As expected, the GPU easily 
outperformed the CPU. 

 
Figure 3: Performance Comparison – GPU vs CPU 

 
 

4.2 PERFORMANCE COMPARISON 
BETWEEN OPENCL & CUDA 
 

Performance between OpenCL and CUDA was 
compared by taking into account the FLOPS (Floating 
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Point Operations/Second). 

 

Figure 4: Performance Comparison – Bitonic Recursive – 
Radeon HD 6970 & Tesla C2050 

 
Figure 5: Performance Comparison – DCT  – Radeon HD 

6970 & Tesla C2050 

OpenCL initially performs better than CUDA till it 
experiences a drop in performance. This drop in 
performance is because at this point CUDA 
experiences a full warp (32 threads) and hence an 
increase in performance. At this point, the 
performance of OpenCL in comparison to CUDA 
drops. After this point, the performance of OpenCL 
increases linearly in comparison to CUDA as OpenCL 
attains a full wavefront (64 threads). However, 
performance of CUDA on Tesla C2050 increases at a 
faster rate in comparison to Radeon HD 6970 as it has 
a higher core clock. 

4.3 FAIR PERFORMANCE COMPARISON 
BETWEEN OPENCL & CUDA 
 

As we are comparing performance across two 
different GPU architectures, it isn’t fair to just 
compare the FLOPS, which takes into consideration 
the execution time of the application that depends on 
how powerful the processor it. If the comparison had 
been made on the same device, then comparing the 
performance based on FLOPS would have been fair. 

Performance between OpenCL on Radeon HD 6970 
and CUDA on Tesla C2050 is compared fairly by 
taking into account factors, which are most important 

for our application. These factors are listed Memory 
Bandwidth, Floating Point Performance and 
Architecture Related Differences. 

Table 4: Comparison between the two devices based on 
different heurestics for FFT benchmark 

 AMD Radeon 
HD 6970 

NVIDIA 
Tesla C2050 

#BW 
attained 
(GB/s) 

0.0105 0.0288 

#Flops 
attained 

(GFLOPs) 

0.1124 0.3079 

As we can see from Tables 3 and 4, even though 
Radeon HD 6970 has a higher number of cores, a 
higher theoretical floating-point performance and a 
higher theoretical memory bandwidth in comparison 
to Tesla C2050, it achieves a lower performance. We 
see that both devices attain very low GFLOPs. The 
main reason for this is that both devices attain a very 
low memory bandwidth and hence this limits the 
performance, as floating-point performance is directly 
proportional to the memory bandwidth. An 
application cannot experience an increase in floating 
point performance if it is blocked waiting for data due 
to insufficient memory bandwidth.  

Performance of the mapping framework on CUDA 
was evaluated after removing the data from   the 
constant memory and putting it into global memory. 
As expected, there was a decrease in performance as 
compared to the benchmarks, which used constant 
memory. 

 

Figure 6: Effect Of Constant Memory on Performance – DCT 
 

Performance of the application drops after the 
removal of Constant Memory in CUDA as expected 
but the performance drop is just about 10-12%, which 
isn’t a very significant drop, and its performance is 
still better than OpenCL. 
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Performance of the mapping framework was then 
evaluated by estimating the effect of S on the different 
devices. Performance of OpenCL doesn’t increase at 
the same rate as CUDA as S is increased. 

 

Figure 7: Effect of S on the Performance – MatrixMult 
 

The performance of OpenCL on Radeon HD 6970 
increases slower than CUDA on Tesla C2050 when S 
is increased. This shows that as the degree of 
parallelism is increased, CUDA responds much better 
than OpenCL. CUDA exposes the parallelism better 
than OpenCL. 

One of the main reasons why the performance of 
OpenCL decreases slower than CUDA when S is 
increased is because Radeon HD 6970 has a slower 
core clock as compared to Tesla C1060 and Tesla 
C2050 as seen in Table 5. Core clock gives an 
indication of how fast the processor operates on each 
GPU and hence when we increase S, the device has to 
process more data and Tesla C2050 processes this 
data faster than Radeon HD 6970. 

OpenCL on AMD is a portable language for GPU 
programming as it can target different devices. 
However, there might be a performance penalty 
because of its portability. CUDA seems to be a better 
choice for applications where achieving as high a 
performance as possible is important. 

5. CONCLUSION 
Different benchmarks were tested and their 
performance on OpenCL analyzed after the 

framework was successfully ported. 

Performance between OpenCL and CUDA GPUs was 
initially evaluated and analyzed by comparing the 
FLOPS attained. However, as FLOPS is a measure of 
execution time, it doesn’t ensure fairness. A new fair 
method of comparison was developed which takes 
into consideration the architecture of the different 
devices being compared. The comparison was made 
using a few different heuristics most important for the 
mapping framework. 
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